DUPLICATION OF INFERIOR VENA CAVA AND CONTINUATION OF LEFT INFERIOR VENA CAVA AS AZYGOS VEIN: A CASE REPORT
Parveen Ojha¹, Seema Prakash², L.K. Jain³

HOW TO CITE THIS ARTICLE:

ABSTRACT: A rare variant of duplication of inferior vena cava was observed during routine dissection of posterior abdominal wall of a middle aged cadaver. During dissection of the thorax, a large diameter vena azygos was noticed. After completion of thorax dissection, the thoracic cage was removed by cutting at 7th thoracic vertebra. During dissection of the abdomen two Inferior Vena Cava, Right and Left were observed. Right and left inferior vena cava were seen arising from an inter-iliac venous channel present transversely in front of the body of 4th lumbar vertebra. Right inferior vena cava followed its normal course through the liver to the right atrium, while left inferior vena cava after its formation received left renal vein, behaved like hemiazygos vein as it passed behind aorta, then through the aortic opening of diaphragm ascended as vena azygos and terminated in the superior vena cava.

Embryogenesis of such an anomaly suggests persistence on the left of one of the longitudinal channels (supra cardinal or subcardinal veins) which normally disappear in early fetal life. Inter post cardinal anastomosis remains persistent in this case as interiliac venous channel. Caval malformations are considered as a new etiologic factor for thrombosis because of venous stasis. Double Inferior Vena Cava is mostly diagnosed accidentally while doing radiographic imaging for other reasons. These type of anomalies if thrombosed can be mistaken as pathological lesions such as Lymphadenopathy, Left pyelo-ureteric dilatation or Metastatic testicular carcinoma. Thus knowledge of such anomalies are of immense importance to surgeons and radiologists to avoid complications during surgeries and diagnostic pitfalls during imaging.

KEY WORDS: Inferior vena cava, duplication of IVC, Azygos vein,

INTRODUCTION: Embryogenesis of Inferior Vena Cava (IVC) is a complex process involving sequential formation and regression of three paired cardinal channels and various anastomosis formed between them at 6th – 8th week of intrauterine life. This complexity accounts for great diversity in anomalies. Duplication of IVC is the most common anomaly (0.2-3%)¹ observed during cadaveric dissection as well as in clinical practice. Various forms of duplication have been reported. Duplication of inferior vena cava with left IVC terminating into left renal vein², Duplication of IVC with azygos continuation³, Double IVC with double superior vena cava⁴, Right sided duplicated IVC⁵, Duplicated IVC with unilateral retrocaval ureter⁶, or Bilateral retrocaval ureter⁷.

Kehagias et al (1986)⁸, Muecke et al (1972)⁹, Hama Y (2007)¹⁰, Mani et al (2000)¹¹ have reported association of duplication of IVC with various congenital anomalies. Minniti et al. (2002)¹² has reported three new variants of anomalies of IVC. One of which is duplication of IVC with hemiazygos or azygos continuation of left one. Such a rare variant was also observed by us. In this case report, its embryogenesis and clinical importance are discussed.
OBSERVATION: During routine dissection of a middle-aged male cadaver, an unusual duplication of the inferior vena cava was observed. While doing the dissection of the thorax, an Azygos vein about 1 cm in diameter was noticed (Fig-1). This Azygos vein, left to the abdominal aorta, was coming through the aortic opening of the diaphragm. The 2nd, 3rd, and 4th intercostal veins of either side joined to form a right and a left superior intercostal vein which opened in the vena azygos. Thorax was then removed from the abdomen at the level of 7th thoracic vertebra. Accessory hemiazygos vein was absent. Now the dissection of the abdomen was started. The anterior abdominal wall and various abdominal organs were dissected. During dissection of the posterior abdominal wall, right and left IVC (Fig 2) were seen on either side of the aorta. Both IVC had their origin from a transversely placed interiliac venous channel (about 1 inch in length) in front of the 4th lumbar vertebra and about 1 inch below the bifurcation of the abdominal aorta (at the level of the 3rd lumbar vertebra). This venous channel was formed by the union of common iliac veins of either side (Fig 2). Right IVC followed its normal course to the right atrium. Left Inferior vena cava, lying on the left side of the lower thoracic vertebra, ascended along with the aorta on its right side to pass through the aortic opening of the diaphragm. In the thorax, it obliquely crossed behind the thoracic part of the aorta, from left to right side opposite the 7th thoracic vertebral body. It behaved like a hemiazygos vein and then ascended as a vena azygos about 1 cm in diameter, arching over the hilus of the right lung and terminating in the superior vena cava. Hemiazygos vein was absent. The 5th to 11th intercostals were terminating in the azygos vein. Ascending lumbar veins on either side received lumbar and subcostal veins of their corresponding side and terminated in the azygos vein. In addition to the above described venous channel, there was an oblique venous channel superficial to the right common iliac artery connecting the interiliac venous channel inferiorly and the right inferior vena cava superiorly at the level of the 2nd lumbar vertebra. Right and left renal veins were seen terminating into right and left IVC respectively.

Right gonadal and right suprarenal vein terminated in right IVC while left gonadal and left suprarenal vein terminated in the left renal vein.

Two renal arteries close to each other were seen entering the hilum of the right kidney. On the left side, the two renal arteries were seen crossing left IVC anteriorly. The accessory renal artery on the left was originating below the origin of the inferior mesenteric artery and after ascending superolaterally to the left IVC entered the lowest part of the hilum of the left kidney.

DISCUSSION: Developmentally, the inferior vena cava of the adult is a composite vessel. Function of the Inferior vena cava is initially carried by right and left postcardinal veins. The early postcardinal veins communicate across the midline via an inter-postcardinal anastomosis. It diverts an increasing volume of blood into right longitudinal veins, which accounts for the disappearance of most of those on the left. Numerous anomalies of the Inferior vena cava have been recorded and are attributable to arrests or errors in the complicated series of developmental changes which results in its formation. Sometimes the vessel is represented below the level of renal veins by two more or less symmetrical vessels. This is often associated with absence of the cross anastomosis connecting the two common iliac veins, and is due to persistence on the left of one of the longitudinal channels (supra or subcardinal) which normally disappear in early fetal life. Inter-postcardinal anastomosis remains persistent in this case as interiliac venous channel and its left end continued with left supracardinal vein (Left Inferior Vena Cava). Prerenal and Postrenal part of Left Subcardinal vein persists as Left suprarenal vein and left gonadal vein, hence terminating in left renal vein. The Left Supracardinal...
vein then continued through hemiazygos vein and with azygos vein which opened in the superior vena cava.

Anomalies of IVC though rare (4%)\(^4\) are of immense clinical importance. Etiology of venous thromboembolism in young patients is frequently associated with hereditary coagulation abnormalities, immunological disease and neoplasia. The advent of radiological advances, namely Computed Tomography and venography has identified vena caval malformations as a new etiologic factor worthy of consideration\(^5\) because of venous stasis\(^6\). Recurrence of thromboembolism after filter placements or after withdrawal of treatment should raise suspicion of vena caval anomalies.\(^7\) Radiologically presence of thrombosed double IVC can be mistaken as a pathological lesion such as paraaortic lymphadenopathy\(^8\) or left pyelo-ureteric dilatation\(^9\). There are case reports describing patients who underwent exploration for presumed metastatic testicular carcinoma based on CT appearance of the anomaly\(^10\) as thrombosed double inferior vena cava can mimics paraaortic lymphadenopathy on CT scans raising suspicion of local or distant malignancy. Klimberg et al \(^11\), Hunter\(^12\) have reported that error in staging of testicular tumours can be due. A dilated azygos vein may present as widening of mediastinum suggesting a mediastinal mass\(^13\) or dissection of aorta\(^14\) on radiographs. Pallin et al \(^15\) have reported azygos continuation masquerading as neoplasm.

Vijayvergiya et al \(^16\) have emphasized on knowledge of venous anomalies as it can avoid undue delay during cardiac pacing procedures. Shindo et al \(^17\) have reported that unexpected venous injuries complicated the operation in a patient who had a double IVC and inflammatory aortic aneurysm. Preoperative assessment and intraoperative awareness of caval anomalies are important to prevent unexpected venous injuries.

So knowledge of venous anomalies is of immense importance for surgeons as well as for radiologists as it reduces the chances of error in diagnosis and management.

REFERENCES:

Fig. 1 Dilated azygos Vein (Continuation of Left IVC) terminating in superior vena cava (SVC)

Fig. 2 Double Inferior Vena Cava and Left IVC Continuing as Azygos Vein

- AO : Abdominal Aorta
- RRA : Right Renal Arteries
- RIVC : Right Inferior Vena Cava
- OVC : Oblique Venous Channel
- LIVC : Left Inferior Vena Cava
- IVC : Interiliac venous channel
- IV : Intercostal Veins
- LSV : Left Subcostal Vein
- LRA : Left Renal Arteries
AUTHORS:
1. Parveen Ojha
2. Seema Prakash
3. L.K. Jain

PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Anatomy, R.N.T. Medical College, Udaipur.
2. Associate Professor, Department of Anatomy, R.N.T. Medical College, Udaipur.
3. Professor, Department of Anatomy, Geetanjali Medical College & Hospital, Udaipur.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Parveen Ojha,
D-17, Hospital Campus,
M.B. Govt. Hospital,
Udaipur, (Rajasthan)
Email: drparveena@yahoo.com

Date of Submission: 26/06/2013.
Date of Peer Review: 27/06/2013.
Date of Acceptance: 13/07/2013.
Date of Publishing: 17/07/2013