PROFILE OF PAEDIATRIC PATIENTS WITH CERVICAL LYMPHADENOPATHY: A STUDY FROM CENTRAL INDIA
Jharna Mishra¹, M. Maheshwari², Roshan Chanchlani³

ABSTRACT: INTRODUCTION: Cervical lymphadenopathy (CLA) is a common problem in clinical practice during childhood. Lymphadenopathy is the disease process of lymph nodes that render them abnormal in size and consistency. AIM: To determine the causes of persistent lymphadenopathy in pediatric patient and to test a diagnostic approach in its management. METHODS: This study was conducted at tertiary care hospital, over two year period amongst children between ages of 1-15 years with persistent lymph node enlargement of >1 cm in diameter and >2 weeks duration. RESULTS: 40(61.5%) had unilateral cervical lymph node enlargement, while in 25 children (38.5%) the pathology was bilateral. We found that in 35 children (53.8%) the lymph nodes regressed in size over 2 weeks’ time and in 15 (23%) children, they regressed in 4 weeks’ time as proved by ultrasonography examination. Fever was the commonest systemic manifestation in these children 80%, 7(10.7%) had lymph node abscess on initial presentation. CONCLUSION: Reactive lymphadenitis is the commonest cause of cervical lymph node enlargement in children. Majority of lymph nodes regress in 4 weeks’ time. Persisting lymph nodes more than 4 weeks warrant histological examination. Tuberculosis is a common cause of cervical lymphadenopathy among Indian patients.

KEYWORDS: Lymphadenopathy, Lymph node, Lymphadenitis.
MATERIAL AND METHODS: This study was conducted over two year period from May 2012 to May 2014 in a tertiary care institute to evaluate children with persistent lymphadenopathy. Persistent lymphadenopathy was defined as enlarged lymph nodes (> 10 mm in diameter) and persisting for more than 2 weeks. The study included all children from 1 year to 15 years of age with the diagnosis of persistent lymphadenopathy.

Demographic profile was noted and accompanying diseases of the patients were assessed. Initial work up of all patients included: detailed physical exam, complete blood count, blood film, erythrocyte sedimentation rate (ESR), purified protein derivative (PPD), chest X ray (CXR) and ultrasonic examination, histological testing by fine needle aspiration cytology (FNAC) or excisional biopsy were preserved for cases with abnormal findings (abnormal white blood cells (WBC) count; abnormal blood film; high ESR > 20 ml/hr; PPD > 10 mm.

RESULTS: A total of sixty five children between the ages of 1- 15 years assessed during the specified period of time. The age of patients ranged 1-5 years with a median of 7 years and a mean of 4.8 ±2.3SD years. Males were 43 (66.1%) and females were 22(33.8%) All had persistent lymph node enlargement based on our previous definition. 40(61.5%) had unilateral cervical lymph node enlargement, while in 25 children (38.5%) the pathology was bilateral. (fig.1)

The jugular-digastric and the submandibular lymph nodes were the two most common enlarged nodes in 80% of children. Sub-mental, anterior cervical, posterior cervical, occipital accounted for the rest of the pathology (20%).

We found that in 35 children (53.8%) the lymph nodes regressed in size over 2 weeks’ time and in 15(23%) children, they regressed in 4 weeks’ time as proved by ultrasonography examination. The FNAC showed reactive lymphoid hyperplasia in these 15 children (table no. 1). All of these children had tender, mobile, and soft nodes on clinical examination. In all of them complete blood count, blood film, ESR and CXRs were normal. Ultrasound showed enlarged lymph nodes with homogenous echotexture in all of them.

Fever was the commonest systemic manifestation in these children 80%, 7(10.7%) had lymph node abscess on initial presentation (table no. 2). Based on clinical and ultrasonic findings, surgical excision and histological testing confirmed the diagnosis; tuberculous lymphadenitis was diagnosed in 5 children (7.6%) based on clinical, PPD testing (>10 mm in diameter) and caseating granuloma on lymph node histology. (Fig. 2, 3) The ultrasound showed a non-homogenous echotexture with necrotic shadows and areas of calcification.

3(4.61%) of the children had bilateral lymph node enlargement and splenomegaly or Hodgkin’s lymphoma on excisional biopsy. These three children had high ESR on initial presentation, and their CXR's showed widened mediastinum with hilaradenopathy.

DISCUSSION: The workup of palpable lymph nodes is a common clinical task for the general practitioners and the pediatricians. Most of the causes of CLA are benign and may resolve spontaneously. It can be a sign of malignancy or systemic disease, thus understanding the differential causes is of paramount importance. Cervical lymphadenopathy is a common presentation in children in both the primary care and hospital setting. Park states that 90% of children aged 4-8 yrs have palpable cervical lymph nodes.5
According to Larsson et al 38- 45% of otherwise healthy children have palpable cervical lymph nodes. The differential diagnosis of a persistent neck lump in children is different from adults because of increased incidence of congenital anomalies and infectious diseases and rarity of malignant disorder. In our study we excluded congenital anomalies and limited our research to persistently enlarged lymph nodes.

It is widely accepted that the absence of clinical signs of inflammatory disease, negative laboratory testing and progressive reduction of size of lymph node indicate reactive hyperplasia. The study indicates that reactive inflammatory changes are the commonest pathology in children as confirmed by other studies. Our observation indicates also that most cases of lymphadenopathy are self-limited and require no treatment.

Failure of resolution after 4 weeks might be an indication for diagnostic histology. Most researches indicate that bilateral lymphadenopathy is more likely to be reactive in nature but our study cannot confirm that because in 61% of children enlargement was unilateral. Mobility, softness and tenderness are almost always associated with reactive changes, which is similar to observation by other researchers. We found that ultrasound is a valuable diagnostic tool for showing the size, shape and echotexture of lymph nodes.

A homogenous echotexture, oval shape, central necrosis, blurred margins were associated with reactive hyperplasia in most cases, while a non-homogenous echotexture suggests other diagnosis. Ultrasonography should not be considered as a definitive mean to rule out neoplasia in patients with persistent lymphadenopathy.

CONCLUSION: Enlargement of cervical lymph nodes is a common problem in children. Reactive hyperplasia secondary to benign infectious causes is usually the commonest pathology. Most of these cases regress in 4 weeks’ time. Persistent lymph nodes more than 4 weeks warrant histological examination done. A management strategy should be established to diagnose children with persistent lymph node enlargement.

REFERENCES:

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive hyperplasia (Regressed in 2 wks)</td>
<td>35</td>
<td>53.84</td>
</tr>
<tr>
<td>Reactive hyperplasia (Regressed in 4 wks)</td>
<td>15</td>
<td>23.07</td>
</tr>
<tr>
<td>Lymph node abscess</td>
<td>7</td>
<td>10.76</td>
</tr>
<tr>
<td>TB lymphadenitis</td>
<td>5</td>
<td>07.69</td>
</tr>
<tr>
<td>Hodgkin's lymphoma</td>
<td>3</td>
<td>04.61</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>100</td>
</tr>
</tbody>
</table>

Table no. 1: Diagnosis of persistent lymphadenopathy in children

<table>
<thead>
<tr>
<th>Presenting symptoms</th>
<th>Number of children</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>52</td>
<td>80.0</td>
</tr>
<tr>
<td>Neck mass</td>
<td>45</td>
<td>69.2</td>
</tr>
<tr>
<td>Cough</td>
<td>12</td>
<td>18.4</td>
</tr>
<tr>
<td>Loss of weight</td>
<td>15</td>
<td>23.0</td>
</tr>
<tr>
<td>Sore throat</td>
<td>21</td>
<td>32.3</td>
</tr>
<tr>
<td>Loss of appetite</td>
<td>08</td>
<td>12.3</td>
</tr>
<tr>
<td>Headache</td>
<td>05</td>
<td>07.6</td>
</tr>
<tr>
<td>Malaise</td>
<td>07</td>
<td>10.7</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>15</td>
<td>23.0</td>
</tr>
<tr>
<td>Earache</td>
<td>03</td>
<td>04.6</td>
</tr>
<tr>
<td>Dental caries</td>
<td>03</td>
<td>04.6</td>
</tr>
</tbody>
</table>

Table no. 2: Distribution of the subjects according to the presenting symptoms
Fig. 1: Clinical photograph showing cervical lymphadenopathy

Fig. 2: Granulomatous Lymphadenitis

Fig. 3: Granulomatous Lymphadenitis showing Langhan’s giant cell

AUTHORS:
1. Jharna Mishra
2. M. Maheshwari
3. Roshan Chanchlani

PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Pathology, Chirayu Medical College & Hospital, Bhopal.
2. Associate Professor, Department of Paediatrics, Peoples College of Medical Sciences, Bhopal
3. Associate Professor, Department of Surgery, Chirayu Medical College & Hospital, Bhopal.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Roshan Chanchlani,
#1/6-Idgah Kothi,
Doctors Enclave, Near Filter Plant,
Idgah Hills, Bhopal-462001, M. P.
Email: roshanchanchlani@gmail.com

Date of Submission: 18/06/2014.
Date of Peer Review: 19/06/2014.
Date of Acceptance: 26/06/2014.
Date of Publishing: 02/07/2014.