VARIATIONS IN THE NUMBER OF FORAMEN TRANSVERSARIUM: AN OSTEOLOGICAL STUDY

Amit Kumar Saxena1, Prachi Saffar Aneja2, Naresh Kumar Sharma3, Harnam Singh Madan4

1Associate Professor, Department of Anatomy, Faculty of Medicine and Health Sciences, SGT University, Gurgaon, Haryana.
2Associate Professor, Department of Anatomy, Faculty of Medicine and Health sciences, SGT University, Gurgaon, Haryana.
3Associate Professor, Department of Physiology, SHKM Medical College, Mewat, Nuh, Haryana.
4Assistant Professor, Department of Orthopaedics, SHKM Medical College, Mewat, Nuh, Haryana.

ABSTRACT

BACKGROUND
Foramen transversarium is located on the transverse process of cervical vertebrae. These foramina are known to exhibit variations with regard to number, size, shape etc. Vertebral artery and vein passes through the FT of upper six cervical vertebrae.

AIMS
The aim of this study to observe the variations in number of foramen transversarium in typical cervical vertebrae.

METHOD
The study was done on 240 dry typical cervical vertebrae (C3-C6). Broken or damaged typical cervical vertebrae were excluded from the study.

RESULTS
In this study 20 cervical vertebrae (8.4%) are having double foramen transversarium. Unilaterally and bilaterally the incidence of double foramen transversarium is 6.66% and 1.66% respectively.

DISCUSSION AND CONCLUSION
The variations of the foramen transversarium appears to more on lower cervical vertebrae. The knowledge of these variations are helpful for spinal surgeons and radiologist for evaluation of the patients.

KEYWORDS
Cervical Vertebrae, Foramen Transversarium, Vertebral Artery.

INTRODUCTION
The cervical vertebrae are identified by the presence of Foramen Transversarium (FT) in the transverse processes. This foramen transmits the vertebral artery, vertebral vein and sympathetic fibers from the inferior cervical ganglion. C7 vertebra transmits only vertebral vein, sometimes this foramen is small or absent.

The transverse process of adult anatomy is morphologically a compound structure containing the foramen transversarium. It displays anterior and posterior roots or bars, which terminate laterally as anterior and posterior tubercles. The roots are connected lateral to the foramen by an intertubercular lamella of bone known as the costotransverse bar.1 The deformation and variations of this foramen may affect the anatomical course of vital vascular and neural structures and consequently cause pathological conditions. Double FT or “FT bipartite” is a rare condition and seldom reported in the literature.

The tortuosity of the vertebral artery may be a factor on the development of the variations of the FT. Embryological factors may also contribute to the development of these variations. The presence of the variation of FT may cause vertebrobasilar insufficiency as a result of neck movements. Variations in the number and size of the FT of cervical vertebrae may result in headache, migraine and fainting attacks due to compression of vertebral artery.2 The morphometry and anomalous variations of foramen transversarium are important to the spinal surgeon, neurosurgeon as well as the radiologist in determining the aetiology, side predilection, vascular variations in the cervical region. Clinically, this type of variations is important for the radiologist while doing computed tomographic and magnetic resonant imaging scan.

MATERIALS AND METHODS
This study was conducted on 240 dried human cervical vertebrae obtained from Department of Anatomy, SGT Medical College, Gurgaon, Haryana.

Inclusion Criteria
Typical cervical vertebrae (C3-C6).

Exclusion Criteria
Atlas and axis and C7 vertebrae and any defective or broken bones.

Financial or Other, Competing Interest: None.
Submission 29-12-2015, Peer Review 24-01-2016, Acceptance 30-01-2016, Published 12-02-2016.
Corresponding Author:
Dr. Amit Kumar Saxena,
Flat No. 4080, 1st floor,
I. P. Ext-I, Near Achiever Shopping Mall, Sector 49, Faridabad, Haryana.
E-mail: sonuamit33@gmail.com
DOI: 10.14260/jemds/2016/122
Each cervical vertebra was examined macroscopically for the presence of the double foramen transversarium on one or both the side. Symmetry of foramen transversarium was also investigated. The duplication and symmetry of the FT were recorded and photographed.

STATISTICS
Vertebrae having double FT were recorded and photographed. The data was compiled and analyzed using Microsoft excel software.

RESULTS
Out of 240 dried cervical vertebrae, the double foramen transversarium was found in 20 cervical vertebrae. Incidence of double FT was 8.4%. Among them the unilateral duplication was found in 16 vertebrae, which was 6.66% and bilateral duplication was found only in four vertebrae which was 1.66%. Thus unilateral duplication was more common than bilateral one. The accessory foramen were smaller than the regular foramen. The foramen transversarium transmits vertebral artery and vein all cervical vertebrae except seventh. It can be assumed that variations in the course of vertebral vessels will cause variations in the foramen transversarium. An absence of FT could mean absence of vertebral artery or artery running along the transverse process.

In present study variations in the foramen transversarium were noted. The observations of the present study are supported by the observations found in earlier studies.

Taitz et al.\(^1\) (1978) reported 34 vertebrae, which were having accessory foramen transversarium. Jarostow et al.\(^4\) (2003) reported accessory FT most frequent at the level of C-6 (45.6%) and rarest at C-3 (2.8). Akram et al.\(^5\) reported accessory FT in lower cervical vertebrae, mostly in C-6 (70%). Das et al.\(^6\) (2005) reported 2 cases of accessory FT in 132 cervical vertebrae.

Sharma et al.\(^7\) (2010) reported accessory FT in 8% of cervical vertebrae. Kaya et al.\(^8\) (2011) reported accessory FT in 22.7% cervical vertebrae.

Mishra et al.\(^15\) reported accessory FT in 14.09% of cervical vertebrae. The variations in the number of foramen transversarium can be helpful for neurosurgeon, specially posterior cervical surgery and radiologist in studying the CT and MRI scans.

Double foramen transversarium may be correlated with duplicate vertebral artery. The cases of bifid and duplicate origin and fenestration of vertebral artery have been reported.

<table>
<thead>
<tr>
<th>No. of cervical vertebra examined</th>
<th>Vertebrae double Foramen transversarium</th>
<th>Vertebrae with bilateral double Transversarium</th>
<th>Total</th>
<th>Incidence in (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>16</td>
<td>4</td>
<td>20</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Table 1: Showing Incidence of Double Foramen in Typical Cervical Vertebrae in Present Study

Mishra et al.\(^15\) reported accessory FT in 14.09% of cervical vertebrae. The variations in the number of foramen transversarium can be helpful for neurosurgeon, specially posterior cervical surgery and radiologist in studying the CT and MRI scans.

Double foramen transversarium may be correlated with duplicate vertebral artery. The cases of bifid and duplicate origin and fenestration of vertebral artery have been reported.

DISCUSSION
The variations in the number of foramen transversarium can be helpful for neurosurgeon, specially posterior cervical surgery and radiologist in studying the CT and MRI scans.

Double foramen transversarium may be correlated with duplicate vertebral artery. The cases of bifid and duplicate origin and fenestration of vertebral artery have been reported.

<table>
<thead>
<tr>
<th>No. of cervical vertebra examined</th>
<th>Vertebrae double Foramen transversarium</th>
<th>Vertebrae with bilateral double Transversarium</th>
<th>Total</th>
<th>Incidence in (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>16</td>
<td>4</td>
<td>20</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Table 1: Showing Incidence of Double Foramen in Typical Cervical Vertebrae in Present Study

Mishra et al.\(^15\) reported accessory FT in 14.09% of cervical vertebrae. The variations in the number of foramen transversarium can be helpful for neurosurgeon, specially posterior cervical surgery and radiologist in studying the CT and MRI scans.

Double foramen transversarium may be correlated with duplicate vertebral artery. The cases of bifid and duplicate origin and fenestration of vertebral artery have been reported.
<table>
<thead>
<tr>
<th>Authors</th>
<th>No. of vertebrae examined</th>
<th>Incidence of double foramen transversarium (%)</th>
<th>Incidence of unilateral foramen transversarium</th>
<th>Incidence of bilateral double foramen transversarium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taitz et al.</td>
<td>480</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Das et al.</td>
<td>132</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sharma et al.</td>
<td>200</td>
<td>8</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Kaya et al.</td>
<td>262</td>
<td>22.72</td>
<td>13.63</td>
<td>9.09</td>
</tr>
<tr>
<td>Murlimanju et al.</td>
<td>363</td>
<td>1.6</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Chandravidya et al.</td>
<td>140</td>
<td>4.76</td>
<td>3.8</td>
<td>0.95</td>
</tr>
<tr>
<td>Rathnakar et al.</td>
<td>140</td>
<td>5.7</td>
<td>3.6</td>
<td>1.42</td>
</tr>
<tr>
<td>Chaudhary et al.</td>
<td>133</td>
<td>23.15</td>
<td>14.73</td>
<td>8.42</td>
</tr>
<tr>
<td>Katikreddy et al.</td>
<td>100</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Patra et al.</td>
<td>150</td>
<td>22</td>
<td>10.67</td>
<td>11.33</td>
</tr>
<tr>
<td>Mishra et al.</td>
<td>220</td>
<td>14.09</td>
<td>4.54</td>
<td>9.54</td>
</tr>
<tr>
<td>Present study</td>
<td>240</td>
<td>8.4</td>
<td>6.66</td>
<td>1.66</td>
</tr>
</tbody>
</table>

Table 2: Showing Comparison of Incidence of Double Foramen Transversarium in Different Studies with Present Study

REFERENCES